Tuning anisotropic ion transport in mesocrystalline lithium orthosilicate nanostructures with preferentially exposed facets
نویسندگان
چکیده
منابع مشابه
Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery
Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...
متن کاملNanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries†
Control over porosity and exposed highly reactive facets is challenging in the area of materials science. Materials with high porosity and reactivity of exposed facets are favorable candidates in catalysis and energy storage. Here we demonstrate a facile template-free route to synthesize nanoporous LiMn2O4 nanosheets composed of single-crystalline LiMn2O4 nanorods with exposed {111} facets via ...
متن کاملCharacterization of Lithium Ion Transport Via Dialysis Process
Dialysis is a membrane based separation process in which the concentration gradient across the membrane is the driving force resulting in a flow of material from one side <span style="font-size: 10pt; ...
متن کاملInducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals.
We use elastically induced phase transitions to break the structural symmetry of self-assembled nanostructures, producing significantly modified functional properties. Stretching ordered polymer opals in different directions transforms the fcc photonic crystal into correspondingly distorted monoclinic lattices. This breaks the conventional selection rules for scattering from the crystal planes,...
متن کاملTuning Phonon Transport: From Interfaces to Nanostructures
A wide range of modern technological devices utilize materials structured at the nanoscale to improve performance. The efficiencies of many of these devices depend on their thermal transport properties; whether a high or low conductivity is desirable, control over thermal transport is crucial to the continued development of device performance. Here we review recent experimental, computational, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NPG Asia Materials
سال: 2018
ISSN: 1884-4049,1884-4057
DOI: 10.1038/s41427-018-0059-9